THE CARMICHAEL PRIZE.

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carmichael numbers and pseudoprimes

We now establish a pleasantly simple description of Carmichael numbers, due to Korselt. First, we need the following notion. Let a and p be coprime (usually, p will be prime, but this is not essential). The order of a modulo p, denoted by ordp(a), is the smallest positive integer m such that a ≡ 1 mod p. Recall [NT4.5]: If ordp(a) = m and r is any integer such that a ≡ 1 mod p, then r is a mult...

متن کامل

Higher-order Carmichael numbers

We define a Carmichael number of order m to be a composite integer n such that nth-power raising defines an endomorphism of every Z/nZalgebra that can be generated as a Z/nZ-module by m elements. We give a simple criterion to determine whether a number is a Carmichael number of order m, and we give a heuristic argument (based on an argument of Erdős for the usual Carmichael numbers) that indica...

متن کامل

Carmichael Numbers With Three Prime Factors

A Carmichael number (or absolute pseudo-prime) is a composite positive integer n such that n|an − a for every integer a. It is not difficult to prove that such an integer must be square-free, with at least 3 prime factors. Moreover if the numbers p = 6m + 1, q = 12m + 1 and r = 18m + 1 are all prime, then n = pqr will be a Carmichael number. However it is not currently known whether there are i...

متن کامل

Compositions with the Euler and Carmichael Functions

Let φ and λ be the Euler and Carmichael functions, respectively. In this paper, we establish lower and upper bounds for the number of positive integers n ≤ x such that φ(λ(n)) = λ(φ(n)). We also study the normal order of the function φ(λ(n))/λ(φ(n)).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Lancet

سال: 1859

ISSN: 0140-6736

DOI: 10.1016/s0140-6736(02)72839-0